MiracleLinux 7kernel-3.10.0-1160.119.1.0.15.el7.AXS7AXSA:2025-10986:81

high Nessus プラグイン ID 283090

概要

リモート MiracleLinux ホストに 1 つ以上のセキュリティ更新がありません。

説明

リモートのMiracleLinux 7ホストには、AXSA:2025-10986:81アドバイザリに記載された複数の脆弱性の影響を受けるパッケージがインストールされています。

* ASoCトポロジールートロードのクリーンアップ {CVE-2024-41069}
* ASoCトポロジー解放されたメモリへの参照を修正します {CVE-2024-41069}
* drm/dp_mstMST サイドバンドメッセージ本文長さのチェックを修正します {CVE-2024-56616}
* BluetoothL2CAPsetsockopt ユーザー入力が検証されない問題を修正 {CVE-2024-35965}
* BluetoothL2CAPl2cap_sock_setsockopt() の初期化されていない変数 {CVE-2024-35965}
* usbcdc-acmアクセスする前にコントロール転送バッファサイズをチェックします {CVE-2025-21704}
* igbigb_init_module() での潜在的な無効なメモリアクセスを修正します {CVE-2024-52332}
* vfio/pciリスト最初の PCIe 拡張機能を適切に非表示にします {CVE-2024-53214}
* BluetoothRFCOMMsetsockopt ユーザー入力が検証されない問題を修正します {CVE-2024-35966}
* BluetoothSCOsetsockopt ユーザー入力が検証されない問題を修正します {CVE-2024-35966}
* mediastk1160stk1160_copy_video() のバインドチェックを修正します {CVE-2024-38621}
* net/sched子クラスが空になる際に常に通知を渡します {CVE-2025-38350}
* sch_htbhtb_qlen_notify() を冪等にします {CVE-2025-37932}
* codelqdisc_tree_reduce_backlog() の前に sch->q.qlen チェックを削除します {CVE-2025-37798}
* sch_qfqqfq_qlen_notify() を冪等にします {CVE-2025-38350}
* sch_drrdrr_qlen_notify() を冪等にします {CVE-2025-38350}
* sch_htbhtb_deactivate() を冪等にします {CVE-2025-38350}
* sch_cbqcbq_qlen_notify() を冪等にします {CVE-2025-38000}
* inetsk->sk_rx_dst を RCU ルールに完全に変換します {CVE-2021-47103}
* scsimpt3sasuse-after-free の警告を修正します {CVE-2022-48695}
* scsimpt3sas割り当てられていないメモリでの test/set_bit() 操作を回避 {CVE-2024-40901}
* vmcievent_deliver() のイベントをサニタイズすることで投機の漏洩を回避します {CVE-2024-39499}
* USBcoreメモリバリアを追加することで usb_kill_urb のハングを修正します {CVE-2022-48760}
* nvmemバイトサイズのセルで shift-out-of-boundUBSANを修正します {CVE-2021-47497}
* virtio-net使用される長さの検証を追加します {CVE-2021-47352}
* watchdogdel_timer_sync() を呼び出すことでの潜在的な use-after-free を修正します {CVE-2021-47321}
* scsiqedidebugfs 属性の読み取り中のクラッシュを修正します {CVE-2024-40978}
* wifiiwlwifimvmssids にアクセスする前に n_ssids をチェックします {CVE-2024-40929}
* wifiiwlwifimvm削除時の無効な STA ID に対する保護 {CVE-2024-36921}
* mac802154mac802154_llsec_key_del の llsec キーリソースリリースを修正します {CVE-2024-26961}
* platform/x86wmichar デバイスが開くことを修正します {CVE-2023-52864}
* mediagspcacpia1set_flicker の shift-out-of-bounds {CVE-2023-52764}
* wifimac80211潜在的なキーの use-after-free を修正します {CVE-2023-52530}
* net/proc/net/ptype の情報漏洩を修正します {CVE-2022-48757}
* cryptoqat
* AER リカバリ中の競合状態を解決します {CVE-2024-26974}
* perf/coreリクエスト AUX エリアが領域外の場合、早期に危機を脱するようにします {CVE-2023-52835}
* nettitlan_remove_one の UAF を修正 {CVE-2021-47310}
* wifiath9kath9k_htc_txstatus() の潜在的な array-index-out-of-bounds 読み取りを修正します {CVE-2023-52594}
* netブリッジDEV_STATS_INC() を使用してください {CVE-2023-52578}
* netatomic_long_t を net_device_stats フィールドに追加します {CVE-2023-52578}
* mediadvb-coredvb_register_device() での競合による use-after-free を修正します {CVE-2022-45884}
* mediadvb-coredvb_frontend での競合状態の use-after-free を修正します {CVE-2022-45885}
* xen/gntallocgnttab_query_foreign_access() を使用しません {CVE-2022-23039}
* xen/netfrontマップされたステータスに gnttab_query_foreign_access() を使用しません {CVE-2022-23037}
* xen/grant-tablegnttab_try_end_foreign_access() を追加 {CVE-2022-23038}
* ovlコピーアップでの無効な uid/gid マッピングの失敗 {CVE-2023-0386}
* ALSAossPCM OSS バッファ割り当てオーバーフローを修正 {CVE-2022-49292} CVE
CVE-2021-47103 Linux カーネルでは、次の脆弱性が解決しています inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247
__kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556
__netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557
__napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX:
00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10:
0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:234 ---truncated--- CVE-2021-47310 In the Linux kernel, the following vulnerability has been resolved: net: ti: fix UAF in tlan_remove_one priv is netdev private data and it cannot be used after free_netdev() call. Using priv after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function.
CVE-2021-47321 In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix possible use-after-free by calling del_timer_sync() This driver's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
CVE-2021-47352 In the Linux kernel, the following vulnerability has been resolved: virtio-net: Add validation for used length This adds validation for used length (might come from an untrusted device) to avoid data corruption or loss.
CVE-2021-47497 In the Linux kernel, the following vulnerability has been resolved: nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0); will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we subtract one from that making a large number that is then shifted more than the number of bits that fit into an unsigned long. UBSAN reports this problem: UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8 shift exponent 64 is too large for 64-bit type 'unsigned long' CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9 Hardware name: Google Lazor (rev3+) with KB Backlight (DT) Workqueue: events_unbound deferred_probe_work_func Call trace: dump_backtrace+0x0/0x170 show_stack+0x24/0x30 dump_stack_lvl+0x64/0x7c dump_stack+0x18/0x38 ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194 __nvmem_cell_read+0x1ec/0x21c nvmem_cell_read+0x58/0x94 nvmem_cell_read_variable_common+0x4c/0xb0 nvmem_cell_read_variable_le_u32+0x40/0x100 a6xx_gpu_init+0x170/0x2f4 adreno_bind+0x174/0x284 component_bind_all+0xf0/0x264 msm_drm_bind+0x1d8/0x7a0 try_to_bring_up_master+0x164/0x1ac __component_add+0xbc/0x13c component_add+0x20/0x2c dp_display_probe+0x340/0x384 platform_probe+0xc0/0x100 really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120 driver_probe_device+0x4c/0xfc __device_attach_driver+0xb0/0x128 bus_for_each_drv+0x90/0xdc __device_attach+0xc8/0x174 device_initial_probe+0x20/0x2c bus_probe_device+0x40/0xa4 deferred_probe_work_func+0x7c/0xb8 process_one_work+0x128/0x21c process_scheduled_works+0x40/0x54 worker_thread+0x1ec/0x2a8 kthread+0x138/0x158 ret_from_fork+0x10/0x20 Fix it by making sure there are any bits to mask out.
CVE-2022-23037 Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished.
The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042 CVE-2022-23038 Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished.
The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042 CVE-2022-23039 Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished.
The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042 CVE-2022-45884 An issue was discovered in the Linux kernel through 6.0.9. drivers/media/dvb-core/dvbdev.c has a use-after-free, related to dvb_register_device dynamically allocating fops.
CVE-2022-45885 An issue was discovered in the Linux kernel through 6.0.9. drivers/media/dvb-core/dvb_frontend.c has a race condition that can cause a use-after-free when a device is disconnected.
CVE-2022-48695 In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Fix use-after-free warning Fix the following use-after-free warning which is observed during controller reset: refcount_t:
underflow; use-after-free. WARNING: CPU: 23 PID: 5399 at lib/refcount.c:28 refcount_warn_saturate+0xa6/0xf0 CVE-2022-48757 In the Linux kernel, the following vulnerability has been resolved: net: fix information leakage in /proc/net/ptype In one net namespace, after creating a packet socket without binding it to a device, users in other net namespaces can observe the new `packet_type` added by this packet socket by reading `/proc/net/ptype` file. This is minor information leakage as packet socket is namespace aware. Add a net pointer in `packet_type` to keep the net namespace of of corresponding packet socket. In `ptype_seq_show`, this net pointer must be checked when it is not NULL.
CVE-2022-48760 In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix hang in usb_kill_urb by adding memory barriers The syzbot fuzzer has identified a bug in which processes hang waiting for usb_kill_urb() to return. It turns out the issue is not unlinking the URB; that works just fine. Rather, the problem arises when the wakeup notification that the URB has completed is not received. The reason is memory-access ordering on SMP systems. In outline form, usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on different CPUs perform the following actions: CPU 0 CPU 1
---------------------------- --------------------------------- usb_kill_urb(): __usb_hcd_giveback_urb():
... ... atomic_inc(&urb->reject); atomic_dec(&urb->use_count); ... ... wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); Confining your attention to urb->reject and urb->use_count, you can see that the overall pattern of accesses on CPU 0 is: write urb->reject, then read urb->use_count; whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject. This pattern is referred to in memory-model circles as SB (for Store Buffering), and it is well known that without suitable enforcement of the desired order of accesses -- in the form of memory barriers -- it is entirely possible for one or both CPUs to execute their reads ahead of their writes. The end result will be that sometimes CPU 0 sees the old un-decremented value of urb->use_count while CPU 1 sees the old un-incremented value of urb->reject. Consequently CPU 0 ends up on the wait queue and never gets woken up, leading to the observed hang in usb_kill_urb(). The same pattern of accesses occurs in usb_poison_urb() and the failure pathway of usb_hcd_submit_urb(). The problem is fixed by adding suitable memory barriers. To provide proper memory-access ordering in the SB pattern, a full barrier is required on both CPUs. The atomic_inc() and atomic_dec() accesses themselves don't provide any memory ordering, but since they are present, we can use the optimized smp_mb__after_atomic() memory barrier in the various routines to obtain the desired effect. This patch adds the necessary memory barriers.
CVE-2022-49292 In the Linux kernel, the following vulnerability has been resolved: ALSA: oss: Fix PCM OSS buffer allocation overflow We've got syzbot reports hitting INT_MAX overflow at vmalloc() allocation that is called from snd_pcm_plug_alloc(). Although we apply the restrictions to input parameters, it's based only on the hw_params of the underlying PCM device. Since the PCM OSS layer allocates a temporary buffer for the data conversion, the size may become unexpectedly large when more channels or higher rates is given;
in the reported case, it went over INT_MAX, hence it hits WARN_ON(). This patch is an attempt to avoid such an overflow and an allocation for too large buffers. First off, it adds the limit of 1MB as the upper bound for period bytes. This must be large enough for all use cases, and we really don't want to handle a larger temporary buffer than this size. The size check is performed at two places, where the original period bytes is calculated and where the plugin buffer size is calculated. In addition, the driver uses array_size() and array3_size() for multiplications to catch overflows for the converted period size and buffer bytes.
CVE-2023-0386 A flaw was found in the Linux kernel, where unauthorized access to the execution of the setuid file with capabilities was found in the Linux kernels OverlayFS subsystem in how a user copies a capable file from a nosuid mount into another mount. This uid mapping bug allows a local user to escalate their privileges on the system.
CVE-2023-52530 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix potential key use-after-free When ieee80211_key_link() is called by ieee80211_gtk_rekey_add() but returns 0 due to KRACK protection (identical key reinstall), ieee80211_gtk_rekey_add() will still return a pointer into the key, in a potential use-after-free. This normally doesn't happen since it's only called by iwlwifi in case of WoWLAN rekey offload which has its own KRACK protection, but still better to fix, do that by returning an error code and converting that to success on the cfg80211 boundary only, leaving the error for bad callers of ieee80211_gtk_rekey_add().
CVE-2023-52578 In the Linux kernel, the following vulnerability has been resolved: net: bridge: use DEV_STATS_INC() syzbot/KCSAN reported data-races in br_handle_frame_finish() [1] This function can run from multiple cpus without mutual exclusion. Adopt SMP safe DEV_STATS_INC() to update dev->stats fields. Handles updates to dev->stats.tx_dropped while we are at it. [1] BUG: KCSAN: data-race in br_handle_frame_finish / br_handle_frame_finish read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 1:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553 run_ksoftirqd+0x17/0x20 kernel/softirq.c:921 smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 0:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553 do_softirq+0x5e/0x90 kernel/softirq.c:454
__local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline] _raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] batadv_tt_local_purge+0x1a8/0x1f0 net/batman-adv/translation-table.c:1356 batadv_tt_purge+0x2b/0x630 net/batman-adv/translation-table.c:3560 process_one_work kernel/workqueue.c:2630 [inline] process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2703 worker_thread+0x525/0x730 kernel/workqueue.c:2784 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 value changed: 0x00000000000d7190 -> 0x00000000000d7191 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 14848 Comm: kworker/u4:11 Not tainted 6.6.0-rc1-syzkaller-00236-gad8a69f361b9 #0 CVE-2023-52594 In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: Fix potential array-index-out-of-bounds read in ath9k_htc_txstatus() Fix an array-index-out-of-bounds read in ath9k_htc_txstatus(). The bug occurs when txs->cnt, data from a URB provided by a USB device, is bigger than the size of the array txs->txstatus, which is HTC_MAX_TX_STATUS. WARN_ON() already checks it, but there is no bug handling code after the check. Make the function return if that is the case. Found by a modified version of syzkaller. UBSAN: array-index-out-of-bounds in htc_drv_txrx.c index 13 is out of range for type '__wmi_event_txstatus [12]' Call Trace: ath9k_htc_txstatus ath9k_wmi_event_tasklet tasklet_action_common __do_softirq irq_exit_rxu sysvec_apic_timer_interrupt CVE-2023-52764 In the Linux kernel, the following vulnerability has been resolved: media: gspca: cpia1: shift-out-of-bounds in set_flicker Syzkaller reported the following issue: UBSAN: shift-out-of-bounds in drivers/media/usb/gspca/cpia1.c:1031:27 shift exponent 245 is too large for 32-bit type 'int' When the value of the variable sd->params.exposure.gain exceeds the number of bits in an integer, a shift-out-of-bounds error is reported. It is triggered because the variable currentexp cannot be left-shifted by more than the number of bits in an integer. In order to avoid invalid range during left-shift, the conditional expression is added.
CVE-2023-52835 In the Linux kernel, the following vulnerability has been resolved: perf/core: Bail out early if the request AUX area is out of bound When perf-record wit ...

注意: この説明は、長さの関係上省略されています。詳細については、ベンダーのアドバイザリを参照してください。

Tenableは、前述の記述ブロックをMiracleLinuxセキュリティアドバイザリから直接抽出しています。

Nessus はこれらの問題をテストしておらず、代わりにアプリケーションが自己報告するバージョン番号にのみ依存していることに注意してください。

ソリューション

影響を受けるパッケージを更新してください。

参考資料

https://tsn.miraclelinux.com/en/node/22170

プラグインの詳細

深刻度: High

ID: 283090

ファイル名: miracle_linux_AXSA-2025-10986.nasl

バージョン: 1.3

タイプ: local

公開日: 2026/1/13

更新日: 2026/1/20

サポートされているセンサー: Nessus Agent, Nessus

リスク情報

VPR

リスクファクター: Critical

スコア: 9.0

Vendor

Vendor Severity: High

CVSS v2

リスクファクター: Medium

基本値: 4.4

現状値: 3.8

ベクトル: CVSS2#AV:L/AC:M/Au:N/C:P/I:P/A:P

CVSS スコアのソース: CVE-2022-23039

CVSS v3

リスクファクター: High

基本値: 7.8

現状値: 7.5

ベクトル: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

現状ベクトル: CVSS:3.0/E:H/RL:O/RC:C

CVSS スコアのソース: CVE-2025-38350

脆弱性情報

CPE: p-cpe:/a:miracle:linux:kernel-tools, cpe:/o:miracle:linux:7, p-cpe:/a:miracle:linux:kernel-debug, p-cpe:/a:miracle:linux:kernel-tools-libs, p-cpe:/a:miracle:linux:python-perf, p-cpe:/a:miracle:linux:perf, p-cpe:/a:miracle:linux:bpftool, p-cpe:/a:miracle:linux:kernel-headers, p-cpe:/a:miracle:linux:kernel-devel, p-cpe:/a:miracle:linux:kernel-abi-whitelists, p-cpe:/a:miracle:linux:kernel-debug-devel, p-cpe:/a:miracle:linux:kernel

必要な KB アイテム: Host/local_checks_enabled, Host/MiracleLinux/release, Host/MiracleLinux/rpm-list, Host/cpu

エクスプロイトが利用可能: true

エクスプロイトの容易さ: Exploits are available

パッチ公開日: 2025/10/22

脆弱性公開日: 2021/7/21

CISA の既知の悪用された脆弱性の期限日: 2025/7/8

エクスプロイト可能

Core Impact

Metasploit (Local Privilege Escalation via CVE-2023-0386)

参照情報

CVE: CVE-2021-47103, CVE-2021-47310, CVE-2021-47321, CVE-2021-47352, CVE-2021-47497, CVE-2022-23037, CVE-2022-23038, CVE-2022-23039, CVE-2022-45884, CVE-2022-45885, CVE-2022-48695, CVE-2022-48757, CVE-2022-48760, CVE-2022-49292, CVE-2023-0386, CVE-2023-52530, CVE-2023-52578, CVE-2023-52594, CVE-2023-52764, CVE-2023-52835, CVE-2023-52864, CVE-2024-26961, CVE-2024-26974, CVE-2024-35965, CVE-2024-35966, CVE-2024-36921, CVE-2024-38621, CVE-2024-39499, CVE-2024-40901, CVE-2024-40929, CVE-2024-40978, CVE-2024-41069, CVE-2024-52332, CVE-2024-53214, CVE-2024-56616, CVE-2025-21704, CVE-2025-37798, CVE-2025-37932, CVE-2025-38000, CVE-2025-38350

IAVA: 2025-A-0456